Ultrasonic Team (T. Yanagisawa, Hokkaido Univ,)    
«
3-2 四極子感受率
| Main |
Topics: 超音波からみた多極子・ラットリング
3. 歪みと弾性定数,四極子感受率
3-1 歪みと弾性エネルギー »


3-3 立方晶系に於けるCe3+, Sm3+(J = 5/2), Pr3+, U4+(J = 4)の四極子感受率

Sep 29, 2011
本稿は、新学術領域研究(研究領域提案型)「重い電子系の形成と秩序化」が主催した「重い電子系若手秋の学校’11」のテキストブックをHTML化したものです。

第3章 歪みと弾性定数,四極子感受率

 

3.3 立方晶系に於けるCe3+ , Sm3+ (J = 5/2), Pr3+ , U4+(J =4) の四極子感受率


上記の四極子感受率をJ = 5/2とJ = 4の場合について計算した結果を示し,四極子自由度を有する典型的な希土類化合物の弾性定数と比較してみよう.

(1) J = 5/2

f電子軌道が安定で局在している場合(混成や価数揺動等が無く,結晶場基底状態がLS多重項で記述できる場合)を考える.先ず半整数の角運動量Jを持つ系を考える.Ce3+やSm3+は半整数の角運動量J = 5/2をJ多重項の基底状態に持ち,立方晶系の結晶場ではΓ7二重項とΓ8四重項に分裂する.その波動函数と固有値は次の様に書ける.

¥big|¥Gamma_7;  ¥pm¥big>=¥frac{1}{¥sqrt{6}}¥big|¥pm¥frac{5}{2}¥big>-¥sqrt{¥frac{5}{{6}}}¥big|¥mp¥frac{3}{2}¥big>,¥hspace{10mm}E_7=<¥Gamma _7|H_{¥rm CEF}|¥Gamma _7>=-240B^0_4,¥nonumber ¥¥
¥big|¥Gamma_8;  a¥pm¥big>=¥sqrt{¥frac{5}{{6}}}¥big|¥mp¥frac{5}{2}¥big> -¥frac{1}{¥sqrt{6}}¥big|¥pm¥frac{3}{2}¥big>,¥hspace{53mm}¥nonumber ¥¥ 
¥big|¥Gamma_8; b¥pm¥big>=¥big|¥pm¥frac{1}{2}¥big>,¥hspace{10mm}E_8=<¥Gamma _8|H_{¥rm CEF}|¥Gamma _8>=+120B^0_4.
(23)


ここで|J = 5/2, J_z> = |J_z>とした.Γ7はクラマース二重項であり,磁場によって分裂するが,歪み場では分裂しない.他方,Γ8四重項は2つのクラマース2重項が縮退しており,磁気双極子のみならず,電気四極子・磁気八極子も合わせて4 x 4 = 16の自由度を持つ.(表4)


表4 O群の積表



よって,Γ8基底状態を持つCe, Sm化合物では四極子または八極子が秩序変数となり得るため,極めて興味深い多極子の物理が期待できる.超音波物理の観点からは基底状態がΓ7かΓ8であるかに従って,相異なる弾性定数の温度変化を示すことが期待されるため,分光学的に結晶場基底状態を決定できる.例として図5にJ = 5/2におけるΓ7基底状態の場合とΓ8基底状態の場合の四極子感受率を示す.それぞれ縦軸と横軸は結晶場分裂幅Δ [K]で規格化してある.ここでxはLea-Leask-Wolfの結晶場ハミルトニアンにおける変数xに対応する[7].Γ3対称性の歪みに対応する四極子感受率-χΓ3は四極子O22の応答であり,横波弾性定数 (C11-C12)/2に対応する.Γ5対称性歪みに対応する四極子感受率-χΓ5は四極子Oyz, Ozx, Oxyの応答であり横波弾性定数C44に対応する.Γ7基底の場合,低温でヴァン・ヴレック項が支配的となり弾性定数は一定値に収束する.一方,Γ8基底の場合は低温でキュリー項が支配的となり,1/Tに比例するソフト化が現れる.


Fig. 5 (a) J = 5/2に対する立方晶系点群Ohの結晶場レベルスキーム (W = 1とおいた).
結晶場A, Bを仮定した場合の;
(b) 四極子感受率-χΓ3の温度依存性,
(c) 四極子感受率-χΓ5の温度依存性
(縦・横軸共に第一励起状態の結晶場分裂幅Δでスケールした.)



Fig. 6 (a) J = 4に対する立方晶系点群Oh (Th :破線 )の結晶場レベルスキーム (W = 1とおいた) [16,17].
Oh群における結晶場A-Dを仮定した場合の;
(b) 四極子感受率-χΓ3の温度依存性,
(c) 四極子感受率-χΓ5の温度依存性
(縦・横軸共に第一励起状態の結晶場分裂幅Δでスケールした.)


(2) J = 4
次に,全角運動量Jが整数の場合を考えよう,J = 4の波動函数と固有値は以下の様に書ける.
|¥Gamma_1 ¥rangle=¥sqrt{¥frac{7}{12}}|0 ¥rangle+¥sqrt{¥frac{5}{24}}(|+4 ¥rangle-|-4 ¥rangle),¥hspace{15mm}¥langle ¥Gamma _1|H_{¥rm CEF}|¥Gamma _1 ¥rangle=28(B^0_4-60B_6^0),¥hspace{3mm}¥nonumber ¥¥
|¥Gamma_3^{(1)} ¥rangle =¥sqrt{¥frac{1}{2}}(|+2 ¥rangle-|-2 ¥rangle),¥hspace{67mm}¥nonumber ¥¥ 
|¥Gamma_3^{(2)} ¥rangle =¥sqrt{¥frac{5}{12}}|0 ¥rangle-¥sqrt{¥frac{7}{24}}(|+4 ¥rangle-|-4 ¥rangle) ,¥hspace{14mm}¥langle ¥Gamma _3|H_{¥rm CEF}|¥Gamma _3  ¥rangle=4(B^0_4+336B_6^0),¥hspace{3mm}¥nonumber¥¥
|¥Gamma _4^{(0)} ¥rangle =¥sqrt{¥frac{1}{2}}(|+4 ¥rangle-|-4 ¥rangle),¥hspace{67mm}¥nonumber ¥¥
|¥Gamma _4^{(¥pm)} ¥rangle =¥sqrt{¥frac{1}{8}}|¥pm3 ¥rangle+¥sqrt{¥frac{7}{8}}|¥mp1 ¥rangle),¥hspace{14mm}¥langle ¥Gamma _4|H_{¥rm CEF}|¥Gamma _4  ¥rangle=14(B^0_4+6B_6^0),¥hspace{3mm}¥nonumber ¥¥
|¥Gamma _5^{(0)} ¥rangle =¥sqrt{¥frac{1}{2}}(|+2 ¥rangle-|-2 ¥rangle),¥hspace{65mm}¥nonumber ¥¥
|¥Gamma _5^{(¥pm)} ¥rangle =¥sqrt{¥frac{7}{8}}|¥pm3 ¥rangle-¥sqrt{¥frac{1}{8}}|¥mp1 ¥rangle),¥hspace{12mm}¥langle ¥Gamma _5|H_{¥rm CEF}|¥Gamma _5  ¥rangle=2(13B^0_4+210B_6^0).¥nonumber ¥¥
(24)

整数の角運動量を持つ希土類化合物も興味深い弾性的性質を示す.立方晶系においてΓ3二重項の波動函数は,Γ3対称性の電気四極子O20,O22の行列要素に対角成分を持つため,Γ3対称性の四極子感受率に低温で1/Tに比例した結晶場によるソフト化が期待される.一方,磁気測定(帯磁率,中性子散乱)からは選択則(磁気双極子モーメントJx, Jy, Jzは立方晶系においてΓ4uに属することを踏まえて表4のO群の積表を参照してみよう.)よりΓ3二重項の応答が得られないため,超音波測定がΓ3非クラマース系の研究において欠かせない道具となっている.超音波で観測される弾性定数(C11-C12)/2に対応する四極子感受率-χΓ3はΓ3状態のキュリー項を敏感に検出できる.これまでPrPb3, PrMg3, PrPtBi, PrInAg2, PrIr2Zn20などがΓ3基底を持つ化合物として注目されている.そこでは四極子の不整合構造や四極子近藤効果,さらにΓ3二重項が持つ磁気八極子Txyzの効果など,様々な物理の議論が展開されている.

図6(b), (c)にJ = 4について様々な基底状態(Th群の影響はΓ4とΓ5にのみ現れる.ここでは竹ヶ原らによる結晶場ハミルトニアン[16]の6次項(O62-O66)に付く変数yとして,PrOs4Sb12の結晶場解析で用いられた値y = 0.105を用いた.)を仮定した場合の四極子感受率の計算結果を示す.基底状態と第一励起状態の結晶場分裂幅Δで温度軸と縦軸を規格化してある.基底状態がΓ3の場合-χΓ3は低温でキュリー項によるソフト化が現れ,-χΓ5は低温で一定値に収束するヴァン・ヴレック項が支配的となるため選択則によるコントラストが現れる.

さて,典型物質の弾性定数と比較してみよう.図7にCeB6の弾性定数を示す[18].CeB6は立方晶で,Ce3+イオン(J = 5/2)の結晶場基底状態はΓ8(0 K)-Γ7(540 K)であることがわかっている.弾性定数はΓ8四重項を反映して(C11-C12)/2, C44共に低温でキュリー項による1/Tに比例したソフト化が観測される.超音波実験によって決定されたC44の四極子間相互作用係数はg'Γ5= -2.2 Kと負の値をとり,Oyz, Ozx, Oxy型の反強四極子秩序を示唆する.

一方,J = 4の系で超音波が最もその威力を発揮するのは先述のΓ3基底を持つ系であるが,本稿ではあえてPrOs4Sb12を挙げよう.この物質においてPrイオンのサイトシンメトリーはT h で,Γ14(2)が約8 Kで擬縮退した擬四重項基底状態を持つことが解っている.実はこの物質が注目された当初は比熱,磁化の解析から基底状態はΓ23(OhにおけるΓ3)二重項であると考えられていた[19].図8と図9に弾性定数(C11-C12)/2とC44の温度変化と,2つの結晶場モデルによる計算結果をそれぞれ示す.図8の内挿図を見ると,Γ1基底を基にした四極子感受率の計算結果は3 Kで極小値をとってハード化するため,TC = 1.85 Kまで弾性定数の減少が続く実験結果を再現できていない.このように零磁場の四極子感受率の解析では一見Γ23基底の方が良く合っているように見える.しかし,それが誤りであることは弾性定数の磁場変化を測定すると明らかになる.図10に弾性定数(C11-C12)/2の磁場変化(H || <110>)と,基底状態のゼーマン分裂を考慮した四極子感受率の磁場変化をそれぞれの結晶場基底モデルについて示す[20,22].するとそこでも結晶場モデルによって四極子感受率に明らかな差異が認められ,Γ1基底のモデルが良く合うことがわかる.PrOs4Sb12は磁場誘起の四極子秩序を示すが,H || <110>において8 T付近で生じる準位交差がその起源となることからもΓ14(2)の擬四重項基底状態であることが裏付けられる.それでは,なぜ実験結果は低温領域で四極子感受率に基づく計算から「ずれ」るのだろうか.その理由はPrイオンのオフセンター自由度を考えることによって説明される[21].(詳細は5.3章で述べる.)


FIg. 7 CeB6の弾性定数C11, CB, (C11-C12)/2, C44の温度変化



Fig. 8 PrOs4Sb12の弾性定数(C11-C12)/2の温度変化
(30 Kの弾性異常はラットリングに伴う超音波分散である.実線はΓ1基底状態,破線はΓ23基底状態を仮定した場合の四極子感受率による解析)[58]



Fig. 9 PrOs4Sb12の弾性定数C44の温度変化(実線はΓ1基底状態,破線はΓ23基底状態を仮定した場合の四極子感受率による解析)[58]



Fig. 10
(a) PrOs4Sb12の弾性定数(C11-C12)/2の磁場変化 (H || <110>).
(b) 結晶場基底状態にΓ14(2)擬四重項を仮定した場合の四極子感受率-χΓ23の磁場変化 (-χΓ3と同義).
(c) 結晶場基底状態にΓ234(2)擬五重項を仮定した場合の四極子感受率-χΓ5の磁場変化.(それぞれ内挿図は結晶場レベルスキームの磁場変化)[22]



(第3章3.4節に続く)

WriteBacks
TrackBack ping me at
http://sonicbangs.sci.hokudai.ac.jp/yanagisawa/research/HFTeXtbook_Yanagisawa3-3.
Post a comment

writeback message:















VLTLab Home Page Syndicate this site (XML)

Contents  

Archives  

Today's Quotes

Kaleidoscope

<a href='http://sonicbangs.sci.hokudai.ac.jp/yanagisawa/Kaleidoscope/Chargedistribution_Symmetry.htm'>解説記事を読む...</a> ▶Read this article...

Fundings

Eco-inventry

path: research/HFTeXtbook_Yanagisawa3-3.htm